K-nearest neighbours based on mutual information for incomplete data classification

نویسندگان

  • Pedro J. García-Laencina
  • José-Luis Sancho-Gómez
  • Aníbal R. Figueiras-Vidal
  • Michel Verleysen
چکیده

Incomplete data is a common drawback that machine learning techniques need to deal with when solving real-life classification tasks. One of the most popular procedures for solving this kind of problems is the K-nearest neighbours (KNN) algorithm. In this paper, we present a weighted KNN approach using mutual information to impute and classify incomplete input data. Numerical results on both artificial and real data are given to demonstrate the effectiveness of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K nearest neighbours with mutual information for simultaneous classification and missing data imputation

Missing data is a common drawback in many real-life pattern classification scenarios. One of the most popular solutions is missing data imputation by the K nearest neighbours ðKNNÞ algorithm. In this article, we propose a novel KNN imputation procedure using a feature-weighted distance metric based on mutual information (MI). This method provides a missing data estimation aimed at solving the c...

متن کامل

Une approche probabiliste pour le classement d'objets incomplètement connus dans un arbre de décision. (A Probabilistic Approach to Classify Incomplete Objects in a Decision Tree)

We describe in this thesis an approach to fill missing values in decision trees during theclassification phase. This approach is derived from the ordered attribute trees (OAT) method,proposed by Lobo and Numao in 2000, which builds a decision tree for each attribute and usesthese trees to fill the missing attribute values. It is based on the Mutual Information between theattribu...

متن کامل

A novel hybrid method for vocal fold pathology diagnosis based on russian language

In this paper, first, an initial feature vector for vocal fold pathology diagnosis is proposed. Then, for optimizing the initial feature vector, a genetic algorithm is proposed. Some experiments are carried out for evaluating and comparing the classification accuracies which are obtained by the use of the different classifiers (ensemble of decision tree, discriminant analysis and K-nearest neig...

متن کامل

Pseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours

When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...

متن کامل

Evolutionary Nearest Neighbour Classification Framework

Data classification attempts to assign a category or a class label to an unknown data object based on an available similar data set with class labels already assigned. K nearest neighbor (KNN) is a widely used classification technique in data mining. KNN assigns the majority class label of its closest neighbours to an unknown object, when classifying an unknown object. The computational efficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008